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Abstract-A constitutive model, based on large strain plasticity, for simulation of industrial powder
compaction processes is presented. The elastic response is stated in terms of a hyperelastic model
based on a hookean elastic free energy. Plastic response is defined in terms of a two parameter yield
surface that evolves in terms of the relative density. Two different flow rules are considered and
tested in front of some available experimental results. Application to the simulation of an actual
powder-metallurgy compaction process is also shown. Copyright (9 1996 Elsevier Science Ltd.

I. INTRODUCTION

Compaction processes playa fundamental role in powder metallurgy and structural cer
amics manufacturing. In both cases the raw material is a very fine powder which is
compacted, by different forming procedures, and then submitted to a sintering process
(Sands and Shakespeare, 1966; Dixon and Clayton, 1971; Arunachalam and Roman,
1990). The most common compaction procedure is the so-called uniaxial compaction in
which the powder in the die is compacted and shaped by the action of a set of punches
which act sequentially along the vertical direction. Typical mean values of the relative
powder density '1 (measured with respect to the density after the sintering process) before
and after the compaction are '10 = 0.4 and IJr = 0.95, respectively, which means that the
original volume occupied by the specimen reduces around 2.4 times. The main goal of the
compaction process is to obtain a distribution of the density over the compacted specimen
(from now on called the compact) as uniform as possible, in order to reach full effectiveness
of the subsequent sintering process. A good prediction and control of the spring-back
effects and the residual stresses, after loading removal, are also crucial for the goodness of
the industrial manufacturing process. Design of a compaction process consists, essentially,
in determining the sequence and relative displacements of die and punches in order to
achieve such goals. The design process, which has to be done for any new type of piece to
be manufactured, could be effectively improved by using a simulation tool, able to predict
the mechanical response of the compact along the process. One of the main ingredients of
such a code is an appropriated constitutive equation for the compact.

In the last few years, various constitutive models have been proposed for those
purposes. They can be basically classified into:

• Microscopic models, also known as direct models (Turner, 1994; Tamura et al. 1994;
Akisaya et al. 1994). They modelize each particle as a sphere (or approximated sphere) and
the movement of many of them is computed accounting for their relative interaction.
Although these models are thought to simulate the mechanical behaviour of the material,
they fail to model real complex situations like the particles collapse during the process
or the shape irregularity of local dislocations. Moreover, these simulations require long
computational times since many particles have to be taken into account.

• Continuum or macroscopic models (Abouaf, 1985; Chenot et al. 1990; Bandstra et
al. 1990; Weber and Brown, 1990; Gethin et al. 1992; Gethin and Lewis, 1994). They
consider the mechanical behaviour of the compact in a continuum mechanics environment.
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This results in a set of equations describing the variation of density and, more generally, of
all the variables of the problem according to the external pressure. This strategy comes
with a numerical tool to solve the set of equations and thus compute the evolution of those
variables. Up to date, a common characteristic of these models has been the use of the
plasticity theory. The first models of this group were derived from others used for porous
materials (Shima and Oyade, 1976; Weber and Brown 1990; Tomokazu et at., 1992; Riera
et at. 1993; Coccoz et at. 1994) or frictional materials (Trasorras et at. 1989; Bandstra et
at. 1990). Generally, the relative density has been chosen as a hardening variable, implying
that various phenomena like the diffusion and the particle's relative sliding are not con
sidered or are considered negligible. Basically, the differences between these models lie in
the yield function definition and its evolution during the process.

The approach considered in this work lies on a constitutive model, devised for the
development of a numerical tool for simulation of powder compaction processes (Oliver et
at., 1992; Cante, 1995), in the light of previous experiences (Abouaf, 1985; Weber and
Brown, 1990). Since the model is thought to be used in large scale computations, simplicity
and computational efficiency is stressed in balance with its ability to capture the most
relevant physical features of the process: distribution and evolution of density, strains and
stresses. Large strain elasto-plasticity is chosen as a suitable constitutive equation for the
problem together with dry friction models to capture friction effects at the walls of dies and
punches.

The outline of the remains of the paper is as follows: in Section 2, justification is made
about the use of an elasto-plastic constitutive equation. Section 3 is devoted to describe the
constitutive model and some relevant aspects of the numerical integration. After describing,
in Section 4, the chosen treatment for the contact and friction effects, Section 5 is devoted to
the assessment of the model, in front of experimental tests, through numerical simulations.
Finally some concluding remarks are done in Section 6.

2. THE PHYSICAL PROCESS: JUSTIFICATION OF THE USE OF A PLASTICITY BASED
MODEL

At the beginning of the compaction process the material is highly compressible and
the strains are almost fully irrecoverable. From a macroscopic point of view the material
can then be considered as a porous material with a high voids ratio and, consequently, with
a low initial relative density 110 defined as :

'10 = '1111~0 = PI I ::.::: 0.4
Ps 1=0

(1)

where '11 is the relative density at time t, PI is the apparent density at time t and Ps is the
solid density (after syntering). The apparent density evolves from the initial value Po to the
final one Ps attained when the relative density tends to 1.

The behaviour of the material along the compaction process can be explained at the
grain level as the combination of two different behaviours concerning to (Sands and
Shakespeare, 1966): (i) the voids matrix, that evolves reducing the voids ratio, and (ii) the
solid grains. During the first steps of the process the apparent strain comes from voids
reduction, thus being irrecoverable. In later stages the number of grain contacts increases
and variations of the apparent strain are also due to the elastic (recoverable) deformation
of the grains. At final stages the rate of strain is almost fully elastic and the material behaves
elastically (Fig. 1).

Large strain plasticity provides a framework to simulate the large apparent (grain
+voids) irrecoverable deformation associated with voids reduction as well as the much
smaller elastic and plastic strain in the powder particles. Appropriated definitions of the
yield function and the flow rule can be derived to approach the fluid-like behaviour of the
powder at the initial stages evolving towards a typical metallic behaviour at later stages of
the compaction process. Section 3 is devoted to this subject.
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Fig. I. Uniaxial compaction process.

3. CONSTITUTIVE MODEL

3.1. Kinematics
Let n c [RN (N = 2, 3) be the open and bounded domain occupied by the body at the

reference (material) configuration and let X En be the referential description of a particle
of the body. Let [0,1] be the time-like interval of interest where t should be understood
as a monotonically increasing parameter describing the progression of the deformation
process.

Let F = o<p/oX be the deformation gradient, where <p: n x [0, 1] -> [RN is the mapping
that describes the movement of the body n. Then we define U(X, t) = <p(X, t) - X as the
displacement field and we assume the multiplicative decomposition of F (Fig. 2), introduced
by Kroner (1960) and developed by Lee and Liu (1967), Mandel (1972) among others,
defined as:

F(X, t) = rex, t)£P(X, t) (2)

where rand FP are the elastic and plastic counterparts, respectively, of the deformation
gradient tensor F.

Let us consider at the reference configuration n the Green~Lagrange strain tensor:

(3)

where G is the metric tensor at the reference configuration. Similarly, we consider, at the

Fig. 2. Multiplicative decomposition.
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present configuration 0" the Almansi strain vector e which can be related to E through
classical push-forward ¢*(") and puB-back ¢*(.) operators (Abraham et al. 1983):

(4)

Then, it can be shown (Simo and Hughes, 1986; Lubliner, 1990) that the multiplicative
decomposition of the deformation gradient tensor (2) leads to an additive decomposition
of the strain at the present configuration given by:

e = ee+eP • (5)

3.2. Constitutive equation

3.2.1. Free energy and elastic response. In accordance with the assumptions of Mandel
(1972) the local thermodynamic state is defined by means of the variables ee and q, i.e.
the elastic strain and the internal variables, respectively, corresponding to the present
configuration. Then, the free energy density t/J is defined, assuming uncoupled elastic
behaviour, as:

(6)

where t/Je(e - eP) and t/JP(q) correspond to the elastic and plastic counterparts of the free
energy. In general plasticity models, the internal variables q are used to describe the
evolution of the yield function in order to model kinematic or isotropic hardening behav
iours (Lubliner, 1990; Simo and Hughes, 1986). In the present approach, this evolution
can be directly modeBed in terms of the relative density (see Section 3.2.2) without resorting
to any specific internal variable apart from the plastic strain eP• Thus, the free energy can
be written as the elastic counterpart t/Je(ee) in eqn (6). On the other hand, we assume the
elastic deformation small with respect to the total deformation (£0 ~ 1) and the elastic free
energy characterized by the foBowing hookean expression in terms of the elastic strain:

(7)

where c = 2p.I+),,1 ® 1 is the elastic constitutive tensor evaluated at the present configur
ation, I and 1 are fourth and second order unit tensors, respectively, and J: and p. are the
Lame's constants which can be related to the Young's modulus and Poisson's ratio in a
standard manner (Lubliner, 1990). It is also assumed an isotropic and hyperelastic response
of the material so that the Kirchoff stress tensor or at the present configuration reads:

at/J ~
or = ~(ee,q) = c:(e-eP ) = 2p(e-eP ) +I.tr [e-eP]I.

Gee
(8)

Equation (8) can be moved to the reference configuration by performing puB-back oper
ations of the type:

(9)

where S is the second Piola-Kirchoff stress tensor.

3.2.2. Relative density. Mass conservation can be formulated as:

P, DetF = Po (10)

where p, and Po are the particle apparent densities at the present and the initial times,
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respectively. Equation (10) can be rewritten in terms of the relative densities by dividing
both sides by the solid density leading to:

lJo(X)
IJ(X, t) = IJ,(X) = Det [F(X, t)]

where lJo is the initial relative density and IJr is the relative density at time t.

(11 )

3.2.3. Yield function. The yield function considered here follows the initial proposal
of Kuhn and Downey (1971) later used by Weber and Brown (1990). A closed yield surface
is described at the stress space in terms of the mean stress and the 1z invariant of the
deviatoric stresses. The initial yield surface is a point placed at the origin of the stress space.
During the initial steps of the compaction process it evolves quite closely to the hydrostatic
pressure axis to simulate the limited capability of the powder to carry shear stresses. In
later stages it tends assymptotically to a Huber-Von Mises cylinder typical of metallic
materials (Fig. 3). The analytical expression of such a yield surface at the present con
figuration is given by:

(12)

whose derivative with respect to the stresses reads:

(13)

where (Jy stands for the uniaxial yield stress. In eqn (12) parameters at and az, which have
to be determined from the raw material properties, evolve in terms of the relative density
IJ, and rule the shape and size of the yield surface. Terms tr[T] = 1:Ugij = g: T and dev[T] =

T-~tr[T]g-t stand for the trace and deviatoric part of the stress tensor T, respectively. In
Fig. 3 the yield function and typical evolution of parameters at and az are plotted.

1\ = 1

------1r----I-=-------+----In-~----"r____-__t---- r l;

.. -l---......,,==----'-;--- 1\
1\ =1 '0 1\0 1\ =1

Fig. 3. Yield surface evolution and typical evolution of parameters a, and a2' r p = <Jy~,

r, = <Jy J~(a2Ial ).



3166 J. Oliver et al.

3.2.4. Flow rules. In this work two different flow rules have been considered:

(i) Non associated flow rule: the plastic flow is proportional to the elastic strain
according to :

(14)

where LvO stands for the Lie derivative (Abraham et al. 1983). Definition of the flow rule
in terms of Lie derivatives fulfills the objectivity requirements for the plastic flow rule
(Simo, 1988a, 1988b).

(ii) Associatedflow rule:

(15)

The plastic flow is supplemented by the classical Kuhn-Tucker conditions (Lubliner, 1990;
Simo and Hughes, 1986):

(16)

allowing for the determination of the plastic multiplier .t

3.3. Numerical integration of the constitutive equation
Assuming the variables of the model at time tn and the incremental displacement field

!J.Un+1 = Un+1 - Un at time tn+1 are known, the update of the different variables of the
model at time tn + 1 is done as described in the next sections.

3.3.1. Strain and relative density updates. The present configuration and the defor
mation gradient tensor are updated according to :

qJn+ 1 (X) = qJn(X) + !J.Un+1 (X)

Fn+1(X) = Fn(X) +GRAD !J.Un+1(X) (17)

where GRAD stands for the material gradient operator. Then, from eqns (3) and (11) the
following updates of the strain field and relative density emerge:

110 (X)
11n+ 1 (X) = det F (X)n+1

(18)

3.3.2. Plastic strain update: non-associated flow rule. An implicit (backward Euler)
numerical integration of eqn (14) leads to (Cante, 1995):

e~+ 1 (x) = ~(x)+ !J.An+1 [en+1 (x) - e~+ 1 (x)] (19)

where !J.An+1 = !J.tJ,(tn+1)' Term e~ is computed as e~ = 4>n+ 1*[4>~em where 4>: and 4>n+ 1*
stand for pull back and push forward operators at times tn and tn+ 1 respectively.

Equation (19) can be solved for e~+ 1 leading to the following closed form expression
in terms of the plastic multiplier:

(20)

where:
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Finally, from eqn (20) the stresses can be evaluated resorting to eqn (8) as:

3167

(21)

(22)

The update of the plastic strain and the stresses given by eqns (20)-(22) requires the
determination of the plastic multiplier increment ~A.n+ I which is done by the following
elastic-predictor plastic-corrector algorithm (Simo and Hughes, 1986):

• Elastic predictor:
Assuming no evolution of the plastic strain during the considered time step we define

the trial elastic strain as :

(23)

and the corresponding predicted values for the stress field and yield function:

trial _ .. e tria1

Tn+ 1 - c. en + I

(24)

• Plastic corrector:
Case I: If <p~~ll < 0, then, from eqn (24) <Pn+ 1< O. In this case the Kuhn-Tucker

conditions (16) lead to ~A.n+ 1 = 0, so that, from eqns (20) and (22) there is no evolution of
the plastic strain and we can write:

(25)

Case II: Otherwise, if <p~,:ll > 0 the trial state is not admissible so that ~A.n+ I > 0 and
then e~ "# e~+ I' Substitution of eqn (20) into eqn (22) leads to:

(26)

Condition ~A.n+ 1 > 0 implies that in eqn (16) <Pn+ 1 = 0 (consistency condition, Simo and
Hughes, 1986), so that

(27)

Finally, from eqns (12) and (27) straightforward computations lead to the following closed
form determination of OCn+ I as:

~a2(17n+l)0";
OC~+l =------------

II
dev Tlrial 11 2 +! a (>1 )[tr Ttrial ] 2 •n+ I 9 1 ',n+ 1 n+ 1

Once OCn+ 1 is determined the plastic multiplier ~A.n+ I can be solved from eqn (2la).

(28)

3.3.3. Plastic strain update: associatedflow rule. Implicit integration of eqn (15) leads
now to:

p _ -p A 1 o<pn+ 1 A 1 A 1'( )
en+l - en+ilAn+l :'l ilAn+l = iltA tn+ 1

uTn + 1

and, after substitution of eqn (13), eqn (29) reads:

(29)
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(30)

where g is the metric tensor at the present configuration. The next steps are similar to the
ones considered for the non-associated flow rule case. Equations (22) and (30) supplemented
by the Kuhn-Tucker conditions (16) lead, through the predictor--corrector algorithm
scheme of Section 3.3.2, to the following closed form solution for the stress field (Cante,
1995) :

where

{

't'tfi"
n+I

't'n+ 1 = trial trial
Ctn+, dev ['t'n+ 1] + Pn+ IPn+ II

(31)

P
tri• 1 =! tr ['t'tfi., ]n+ 1 3 n+ 1 ,

1 I
Ctn+I=I+4-~A ,PIl+I=1 2 ~A11 Il+I + Ka, Il+I

(32)

and K = ~+ (2/3)ji. Substitution of the stress field 't'n+' given by eqn (31 b) into the yield
condition ¢('t'n+b'1n+') = 0 (consistency condition) leads, after same algebraic com
putations (Cante, 1995), to the following polynomical expression:

P2 II d 1fi.1 11 2 + 2 (tfi.l ) 2 2 ( ) 2 0n+' ev 't'1l+' Ctll + I Pn+' -3 a2 '1n+' Cl... = (33)

which can be solved for ,Un+ , considering eqns (32). In Boxes I and 2, the algorithms for
the associated and non-associated flow rule cases, respectively, are summarized. Also, the
corresponding consistent tangent moduli cP defined by drn+ 1 = cP : den + , is given there for
both cases. Details about the obtention of those consistent tangent operators can be found
elsewhere (Cante, 1995).

4. BOUNDARY TREATMENT: CONTACT AND FRICTION

In order to be used for simulation of actual industrial powder compaction processes
the constitutive model described above has to be supplemented with some additional
ingredients referring to the boundary conditions.

Confinement of the powder by dies and punches implies the addition of a contact
model for the solid. Two main options are available at this point: penalty methods, which
have the advantages of easiness of implementation and preservation of the quadratic
convergence of Newton schemes for the solver, and augmented-lagrangian methods (Simo
and Laursen, 1992; Laursen and Simo, 1993) which have robustness as the main advantage.
For the considered powder compaction process large changes in the material stiffness
occurring along the process, substantially affect the robustness of the penalty methods and
make the second family of methods more convenient. Thus, a unilateral contact scheme
based on an augmented-lagrangian approach has been used for the simulations presented
below (Cante, 1995).

Another relevant aspect of compaction processes is the friction between the compact,
and the walls of dies and punches. Several options are also available here (Curnier, 1984),
but in order to check the reliability of the proposed constitutive equation, a dry friction
model (Coulomb-type friction) has been considered sufficient to capture the more relevant
aspects of friction. Further details about the considered contact and friction models are
given elsewhere (Cante, 1995).

5. MODEL ASSESSMENT: NUMERICAL EXPERIMENTS

The constitutive equation presented above, together with the described methodology
to account for contact-friction effects, have been implemented in a non-linear finite element
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Box 1

Non associated flow rule: numerical integration

1. Updates.

2. Elastic predictor.

3. Yield condition and plastic corrector.
If cP (T~~\, 11n+ d ~ 0 Then

~+l =~

else

3169

, I
~An+l =--1

Xn + I

where

4. Consistent tangent moduli

where

code. In order to evaluate the capability of the whole approach to simulate powder com
paction processes some tests have been driven and the corresponding numerical results are
compared with available experimental results in the next sections.

5.1. Assessment of the flow rule
Doremus et al. (1994) performed a set of compaction experiments using the triaxial

press schematically plotted in Fig. 4b. Both isostatic compaction (hydrostatic pressure) and
triaxial tests were driven. The raw material was iron powder with particle sizes ranging
from 10 pm to 100 {Lm. The compacted specimens had an initial height h = 24 mm and
diameter D = 20 mm. Triaxial tests consisted of an initial isostatic compaction step, up to
the value (J, = 400 MPa for the hydrostatic pressure, followed by a subsequent uniaxial
compaction step carried out by keeping constant (J, and increasing the vertical stress (Jz up
to a maximum value of (Jz = 1250 MPa (Fig 4a).

In the simulations the following values are taken for the material properties:

Young's modulus = 2.0 x 103 MPa

Poisson's ratio = 0.37
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Initial apparent density = 3.67 gr/cm3

Solid density = 7.5 gr/cm3

Initial relative apparent density = tlo = 3.67/7.5 = 0.489

Yield stress = 90 MPa

In Fig. 5, corresponding to the isostatic compression step, experimental and numerical
results (density vs pressure) are compared for both the associated and non-associated flow
rules. Good agreements are found for both cases and no substantial difference due to the
chosen flow rule is observed.

Box 2

Associated flow rule: numerical integration

I. Updates.

2. Elastic predictor.

3. Yield condition and plastic corrector.
If rP(~:;'+a\, 11n+ I) ,,; 0 Then

~+1 = e~

else

L1An+! = positive root of (33)

4. Consistent tangent moduli.

An +! = (['n+1 +~tr['t':;':'tl/-~l®p"n;\.

Where ([', P:;':\, J~ri:\ are defined in Box I, and:
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Fig. 4. (a) Initial geometry of the sample and maximum applied triaxial stress. (b) Schematic

diagram of the triaxial cell (Ernst and Barnekow, 1994).
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Fig. 5. Isostatic compaction test. (a) Non-associated flow rule. (b) Associated flow rule.
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Fig. 6. Triaxial test. (a) Non-associated flow rule. (b) Associated flow rule.

Figure 6 corresponds to the complete triaxial (isostatic+uniaxial compression) test.
Density vs uniaxial strain curves are plotted for both flow rules and for different values of
the hydrostatic pressure p attained at the end of the isostatic compression step. In these
figures the uniaxial strain is computed as (Lr- Lo)/L o where L o and Lr are the initial and
current heights of the specimen, respectively.

As far as numerical simulations are concerned, results of Fig. 6 show very different
behaviour for the non-associated and associated flow rules, the results fitting much better
the experiments in the second case (Fig. 6b). This fact shows that the actual plastic flow,
for the considered type of metallic powder, is much better approached by a flow normal to
the yield surface, i.e. the one given by the associated flow rule of eqn (15), even at early
stages of the compaction process.

Results reported by Ernst and Barnekow (1994) are used to perform some additional
assessments of the associated flow rule. The considered cylindrical specimens had a diameter
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Fig. 7. Isostatic and uniaxial compaction process--eompaction pressure vs apparent density.

of 14.3 mm and an initial height of 80 mm. The raw material was 100.29 (Hoganas) with
1% Microwax C (Hoescht) for which the following values are taken as material properties:

Young's modulus = 5.0 x 104 MPa

Poisson's ratio = 0.37

Initial apparent density = Po = 2.94 gr/cm 3

Solid density = Ps = 7.35 gr/cm 3

Initial relative apparent density = lJo = 2.94/7.35 = 0.4

Yield stress = 170 MPa

An isostatic compaction process was driven up to reach a pressure of 250 MPa. Also,
a purely uniaxial compaction process was considered to reach a vertical pressure of 900
MPa. Comparisons between numerical and experimental results are presented in Fig. 7, in
terms of the vertical pressure vs apparent density, which show quite satisfactory agreements.

5.2. Numerical simulation ofan actual industrial compaction process
The next example refers to the simulation of a multi-level compaction process (Krauss

et al. 1991). The compact specimen is a bearing used in the automotive industry whose
geometry (axisymmetric) is shown in Fig. 8. The initial and final shapes are plotted in the
figure with dashed and full lines, respectively. Characteristic sizes of the specimen are as
follows

R] = 16.1 mm HI = 40.3mm

R 2 = 22.4mm H 2 = 9.40mm

R 3 = 27.7mm H 3 = 17.8mm

R 4 = 32.1 mm H 4 = 60.0mm

H s = 7.50mm.
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Fig. 8. Simulation of an industrial compaction process. Geometry and loading description.
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The compaction is performed by means of the action of five punches, labelled a, b, C, d and
e in the figure, whose corresponding displacements are the following: a = 8.56 mm, b = 12.3
mm, C = 12.14 mm, d = 8.56 mm and e = 18.36 mm.

Once the specimen is compacted, extraction of the compact from the mould was also
simulated in a second step by releasing punches a and band d, and pushing the compact
by means of punches C and e up to complete the extraction. The considered properties of
the material are:

Young's modulus = 1.3 x 104 MPa

Poisson's ratio = 0.37

Initial apparent density = Po = 2.94 gr/cm 3

Solid density = Ps = 7.35 gr/cm3

Initial relative apparent density = '10 = 2.94/7.35 = 0.4

Yield stress = 100 MPa

1-'1
2

['1-'10J27a1('1) = --, a2('1) = --
2+'12 1-'10

Friction effects are considered through a Coulomb's friction model with a friction
coefficient p. = 0.1.

Figure 9 shows the evolution of the density at different stages of the compaction step.
It can be observed to be a fairly uniform density evolution, as corresponds to a well designed
compaction process. Figure lOa-e corresponds to the predicted residual stress states after
the compact extraction showing typical stress concentrations around the inner corners.
Finally, Fig. IOd, shows the predicted final shape (amplified 25 times) exhibiting radial and
vertical spring-back.

6. CONCLUDING REMARKS

Closing this work the following comments about the presented approach should be
made:



Fig. 9. Simulation of an industrial compaction process. Density contours at different stages of the
compaction step.
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(b)

(e) (d)

Fig. 10. Simulation of an industrial compaction process. Predicted residual stress states: (a) radial
stress, (b) axial stress, (c) shear stress, (d) predicted final shape (amplified 25 times).
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• It is stated in a solid mechanics environment using a material (Lagrangian) descrip
tion. Although the raw material, a very fine powder, resembles a fluid, which could induce
to resort to Eulerian descriptions (Jinka et al., 1992; Brekelmans et al., 1991), it is the
opinion of the authors that a Lagrangian approach has several computational advantages.
In fact, compressibility of the material and, consequently, evolution of the density playa
fundamental role in the process and cannot be neglected at all. In a Lagrangian description
mass conservation can be stated locally in a closed form (see eqn 11), thus not enlarging
the number of unknowns of the discretized system of equations to be solved. In an Eulerian
description, however, mass conservation is locally stated through the continuity equations
which have to be numerically integrated adding up to a new non-linear equation (due to
convective terms) to the discretized system of equations that rules the problem.

• Large strain plasticity has proved to be able to capture the most relevant features
of the compaction process. Evolution of the material compressibility can be modelled
through a quite simple (two parameters) yield surface and appropriated flow rules. Con
cerning this point, an associated flow rule has shown a much better behaviour, fitting
experimental results, than the non-associated one, at least for the types of metallic powder
considered in this work. If this can be generalized to other non-metallic types of powder is
an open question.

• Special care has been taken in computational aspects of the model. Due to the
hyperelastic character of the elastic response, and since the proposed flow rules can be
integrated in closed form, consistent tangent operators can be easily derived. The experi
ences of the authors in simulation of some real compaction processes have shown that the
use of such operators is crucial to keep quadratic convergence and, thus, the required
computational time small enough. As the model is envisaged to be used for design of
industrial compaction processes based on trial and error procedures, this fact becomes
extremely relevant.
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